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Background

Hilbert space l2(N) with ‖x‖2 =
√∑∞

j=1 |xj |
2, 〈x , y〉 =

∑∞
j=1 xj ȳj

Bounded linear operator A : l2(N)→ l2(N) realised as matrix
a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .


Denote these by B(l2(N)).

Want to compute spectrum (generalistion of eigenvalues)

Sp(A) := {z ∈ C : A− zI not invertible}.

from the matrix elements.
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Motivation

Quantum mechanics, quasicrystals

Figure: Left: Dan Shechtman, Nobel Prize in Chemistry 2011. Right:
Electron diffraction pattern of quasicrystal.

Intensely investigated since the 1950s, still very active today.

Figure: Left: Artur Avila, Fields Medal 2014. Right: Hofstadter butterfly.
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Our computational problem

Convergence in M, set of all compact subsets of C provided with the
Hausdorff metric d = dH

dH(X ,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x , y), sup
y∈Y

inf
x∈X

d(x , y)

}
.

Allowed to use entries of the matrix representation of A. Want to
compute spectra of a class Ω ⊂ B(l2(N)).

What attributes should an “algorithm” Γn(A) possess?

1 Should converge!

2 Given index n, should only use finite amounts of information.

3 Should read and use this information in a consistent way.

4 Error control?
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Hierarchy of complexity

Definition 1 (Tower of Algorithms)

A tower of algorithms of height k is a family of sequences of functions

Γnk ,...,n1 : Ω→M,

where nk , . . . , n1 ∈ N and Γnk ,...,n1 are “algorithms”. Moreover,

Sp(A) = lim
nk→∞

... lim
n1→∞

Γnk ,...,n1(A).

Definition 2 (Solvability Complexity Index (SCI))

Solvability Complexity Index, SCI(Sp,Ω) is the smallest integer k for
which there exists a tower of algorithms of height k . If no such tower
exists then SCI(Sp,Ω) =∞.
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Problem: SCI(Sp,B(l2(N))) = 3

Solution: restrict to smaller subclass. Large subclass Ω ⊂ B(l2(N)) with
SCI(Sp,Ω) = 1. What’s more can gain error control, an algorithm such
that

z ∈ Γn(A)⇒ dist(z ,Sp(A)) < 2−n.

Call this class Σ1 - “output is reliable”. A stricter condition is that

z ∈ Sp(A)⇒ dist(z , Γn(A)) < 2−n

as well - “output is reliable and captures nearly everything”. Call this class
∆1

Some notation:

If z /∈ Sp(A) write

R(z ,A) := (A− zI )−1 ∈ B(l2(N)).

Operator norm: ‖A‖ := supx :‖x‖=1 ‖Ax‖.
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Main Result

Theorem 3

SCI(Sp,Ω) = 1

The problem is Σ1 not ∆1. What’s more we can build Σ1 algorithms.

Corollary 4

Let G be a countable, locally finite, connected graph and ΩG be class of
finite range interaction Hamiltonians on vertices of G .

SCI(Sp,ΩG ) = 1

The problem is Σ1 not ∆1. What’s more we can build Σ1 algorithms.
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Application: Laplacian on Quasi-crystals

G a graph, V set of vertices. x ∼ y if sites x , y connected by edge.
Laplacian H0 acts on ψ ∈ l2(V ) ∼= l2(N) by

(H0ψ)(x) =
∑
y∼x

(ψ(y)− ψ(x)) .

Spectrum corresponds to the single-electron energy (electronic
transportation).

Calculating the spectrum currently an open problem in the
quasicrystal community - 2D cases very hard!

Vast physics literature on Hamiltonians on aperiodic structures.
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Applications of Quasicrystals

Reinforce steel via coating - e.g. machinery, surgical instruments...

Heat insulation

LEDs

Solar absorbers

Unique electrical properties, optical properties, hardness and nonstick
properties...
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Constructing Penrose Tile
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Näıve Approximations

1 Finite section with open boundary conditions: compute eigenvalues of
truncated matrix PnH0Pn for large n. Similar “Galerkin” methods -
suffer from spectral pollution.

2 Can construct Penrose tile via ”Pentagrid”  “Periodic
Approximants”

These represent state of art in literature. Can we beat this?
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Numerical Results
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Advantages of Method

1 Gain error control - no other general method can do this!

2 Completely local - we can calculate spectrum in any neighbourhood.

3 Parallelisable.

4 Numerically stable.

First algorithm that realises the sharp Σ1 classification - logically
impossible to do better.
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Error and Speed Results
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Thanks for Listening!
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