# A New Class of Algorithms for Computing Spectra with Error Control 

Matthew Colbrook

3rd May 2017

## Background

- Hilbert space $I^{2}(\mathbb{N})$ with $\|x\|_{2}=\sqrt{\sum_{j=1}^{\infty}}\left|x_{j}\right|^{2},\langle x, y\rangle=\sum_{j=1}^{\infty} x_{j} \bar{y}_{j}$
- Bounded linear operator $A: I^{2}(\mathbb{N}) \rightarrow I^{2}(\mathbb{N})$ realised as matrix

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & a_{22} & a_{23} & \ldots \\
a_{31} & a_{32} & a_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Denote these by $\mathcal{B}\left(I^{2}(\mathbb{N})\right)$.

- Want to compute spectrum (generalistion of eigenvalues)

$$
\operatorname{Sp}(A):=\{z \in \mathbb{C}: A-z / \text { not invertible }\} .
$$

from the matrix elements.

## Motivation

- Quantum mechanics, quasicrystals


Figure: Left: Dan Shechtman, Nobel Prize in Chemistry 2011. Right: Electron diffraction pattern of quasicrystal.

- Intensely investigated since the 1950 s, still very active today.


Figure: Left: Artur Avila, Fields Medal 2014. Right: Hofstadter butterfly.

## Our computational problem

- Convergence in $\mathcal{M}$, set of all compact subsets of $\mathbb{C}$ provided with the Hausdorff metric $d=d_{\mathrm{H}}$

$$
d_{\mathrm{H}}(X, Y)=\max \left\{\sup _{x \in X} \inf _{y \in Y} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\}
$$

## Our computational problem

- Convergence in $\mathcal{M}$, set of all compact subsets of $\mathbb{C}$ provided with the Hausdorff metric $d=d_{\mathrm{H}}$

$$
d_{\mathrm{H}}(X, Y)=\max \left\{\sup _{x \in X} \inf _{y \in Y} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\}
$$

- Allowed to use entries of the matrix representation of $A$. Want to compute spectra of a class $\Omega \subset \mathcal{B}\left(I^{2}(\mathbb{N})\right)$.


## Our computational problem

- Convergence in $\mathcal{M}$, set of all compact subsets of $\mathbb{C}$ provided with the Hausdorff metric $d=d_{\mathrm{H}}$

$$
d_{\mathrm{H}}(X, Y)=\max \left\{\sup _{x \in X} \inf _{y \in Y} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\}
$$

- Allowed to use entries of the matrix representation of $A$. Want to compute spectra of a class $\Omega \subset \mathcal{B}\left(I^{2}(\mathbb{N})\right)$.
What attributes should an "algorithm" $\Gamma_{n}(A)$ possess?


## Our computational problem

- Convergence in $\mathcal{M}$, set of all compact subsets of $\mathbb{C}$ provided with the Hausdorff metric $d=d_{\mathrm{H}}$

$$
d_{\mathrm{H}}(X, Y)=\max \left\{\sup _{x \in X} \inf _{y \in Y} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\}
$$

- Allowed to use entries of the matrix representation of $A$. Want to compute spectra of a class $\Omega \subset \mathcal{B}\left(I^{2}(\mathbb{N})\right)$.
What attributes should an "algorithm" $\Gamma_{n}(A)$ possess?
(1) Should converge!


## Our computational problem

- Convergence in $\mathcal{M}$, set of all compact subsets of $\mathbb{C}$ provided with the Hausdorff metric $d=d_{\mathrm{H}}$

$$
d_{\mathrm{H}}(X, Y)=\max \left\{\sup _{x \in X} \inf _{y \in Y} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\}
$$

- Allowed to use entries of the matrix representation of $A$. Want to compute spectra of a class $\Omega \subset \mathcal{B}\left(I^{2}(\mathbb{N})\right)$.
What attributes should an "algorithm" $\Gamma_{n}(A)$ possess?
(1) Should converge!
(2) Given index $n$, should only use finite amounts of information.


## Our computational problem

- Convergence in $\mathcal{M}$, set of all compact subsets of $\mathbb{C}$ provided with the Hausdorff metric $d=d_{\mathrm{H}}$

$$
d_{\mathrm{H}}(X, Y)=\max \left\{\sup _{x \in X} \inf _{y \in Y} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\}
$$

- Allowed to use entries of the matrix representation of $A$. Want to compute spectra of a class $\Omega \subset \mathcal{B}\left(I^{2}(\mathbb{N})\right)$.
What attributes should an "algorithm" $\Gamma_{n}(A)$ possess?
(1) Should converge!
(2) Given index $n$, should only use finite amounts of information.
(3) Should read and use this information in a consistent way.


## Our computational problem

- Convergence in $\mathcal{M}$, set of all compact subsets of $\mathbb{C}$ provided with the Hausdorff metric $d=d_{\mathrm{H}}$

$$
d_{\mathrm{H}}(X, Y)=\max \left\{\sup _{x \in X} \inf _{y \in Y} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\}
$$

- Allowed to use entries of the matrix representation of $A$. Want to compute spectra of a class $\Omega \subset \mathcal{B}\left(I^{2}(\mathbb{N})\right)$.
What attributes should an "algorithm" $\Gamma_{n}(A)$ possess?
(1) Should converge!
(2) Given index $n$, should only use finite amounts of information.
(3) Should read and use this information in a consistent way.
(9) Error control?


## Hierarchy of complexity

Definition 1 (Tower of Algorithms)
A tower of algorithms of height $k$ is a family of sequences of functions

$$
\Gamma_{n_{k}, \ldots, n_{1}}: \Omega \rightarrow \mathcal{M}
$$

where $n_{k}, \ldots, n_{1} \in \mathbb{N}$ and $\Gamma_{n_{k}, \ldots, n_{1}}$ are "algorithms". Moreover,

$$
\operatorname{Sp}(A)=\lim _{n_{k} \rightarrow \infty} \ldots \lim _{n_{1} \rightarrow \infty} \Gamma_{n_{k}, \ldots, n_{1}}(A)
$$

## Hierarchy of complexity

Definition 1 (Tower of Algorithms)
A tower of algorithms of height $k$ is a family of sequences of functions

$$
\Gamma_{n_{k}, \ldots, n_{1}}: \Omega \rightarrow \mathcal{M}
$$

where $n_{k}, \ldots, n_{1} \in \mathbb{N}$ and $\Gamma_{n_{k}, \ldots, n_{1}}$ are "algorithms". Moreover,

$$
\operatorname{Sp}(A)=\lim _{n_{k} \rightarrow \infty} \ldots \lim _{n_{1} \rightarrow \infty} \Gamma_{n_{k}, \ldots, n_{1}}(A)
$$

Definition 2 (Solvability Complexity Index (SCI))
Solvability Complexity Index, $\operatorname{SCI}(\mathrm{Sp}, \Omega)$ is the smallest integer $k$ for which there exists a tower of algorithms of height $k$. If no such tower exists then $\operatorname{SCI}(\mathrm{Sp}, \Omega)=\infty$.

Problem: $\operatorname{SCI}\left(\operatorname{Sp}, \mathcal{B}\left(I^{2}(\mathbb{N})\right)\right)=3$

Problem: $\operatorname{SCI}\left(\operatorname{Sp}, \mathcal{B}\left(I^{2}(\mathbb{N})\right)\right)=3$
Solution: restrict to smaller subclass. Large subclass $\Omega \subset \mathcal{B}\left(I^{2}(\mathbb{N})\right)$ with $\operatorname{SCI}(\mathrm{Sp}, \Omega)=1$. What's more can gain error control, an algorithm such that

$$
z \in \Gamma_{n}(A) \Rightarrow \operatorname{dist}(z, \operatorname{Sp}(A))<2^{-n}
$$

Call this class $\Sigma_{1}$ - "output is reliable".

Problem: $\operatorname{SCI}\left(\operatorname{Sp}, \mathcal{B}\left(I^{2}(\mathbb{N})\right)\right)=3$
Solution: restrict to smaller subclass. Large subclass $\Omega \subset \mathcal{B}\left(I^{2}(\mathbb{N})\right)$ with $\operatorname{SCI}(\mathrm{Sp}, \Omega)=1$. What's more can gain error control, an algorithm such that

$$
z \in \Gamma_{n}(A) \Rightarrow \operatorname{dist}(z, \operatorname{Sp}(A))<2^{-n}
$$

Call this class $\Sigma_{1}$ - "output is reliable". A stricter condition is that

$$
z \in \operatorname{Sp}(A) \Rightarrow \operatorname{dist}\left(z, \Gamma_{n}(A)\right)<2^{-n}
$$

as well - "output is reliable and captures nearly everything". Call this class $\Delta_{1}$

Problem: $\operatorname{SCI}\left(\operatorname{Sp}, \mathcal{B}\left(I^{2}(\mathbb{N})\right)\right)=3$
Solution: restrict to smaller subclass. Large subclass $\Omega \subset \mathcal{B}\left(I^{2}(\mathbb{N})\right)$ with $\operatorname{SCI}(\mathrm{Sp}, \Omega)=1$. What's more can gain error control, an algorithm such that

$$
z \in \Gamma_{n}(A) \Rightarrow \operatorname{dist}(z, \operatorname{Sp}(A))<2^{-n}
$$

Call this class $\Sigma_{1}$ - "output is reliable". A stricter condition is that

$$
z \in \operatorname{Sp}(A) \Rightarrow \operatorname{dist}\left(z, \Gamma_{n}(A)\right)<2^{-n}
$$

as well - "output is reliable and captures nearly everything". Call this class $\Delta_{1}$
Some notation:

- If $z \notin \operatorname{Sp}(A)$ write

$$
R(z, A):=(A-z I)^{-1} \in \mathcal{B}\left(I^{2}(\mathbb{N})\right)
$$

- Operator norm: $\|A\|:=\sup _{x:\|x\|=1}\|A x\|$.


## Main Result

Theorem 3

$$
\mathrm{SCI}(\mathrm{Sp}, \Omega)=1
$$

The problem is $\Sigma_{1}$ not $\Delta_{1}$. What's more we can build $\Sigma_{1}$ algorithms.

## Main Result

Theorem 3

$$
\mathrm{SCI}(\mathrm{Sp}, \Omega)=1
$$

The problem is $\Sigma_{1}$ not $\Delta_{1}$. What's more we can build $\Sigma_{1}$ algorithms.

Corollary 4
Let $G$ be a countable, locally finite, connected graph and $\Omega_{G}$ be class of finite range interaction Hamiltonians on vertices of $G$.

$$
\operatorname{SCI}\left(\mathrm{Sp}, \Omega_{G}\right)=1
$$

The problem is $\Sigma_{1}$ not $\Delta_{1}$. What's more we can build $\Sigma_{1}$ algorithms.

## Application: Laplacian on Quasi-crystals

$G$ a graph, $V$ set of vertices. $x \sim y$ if sites $x, y$ connected by edge. Laplacian $H_{0}$ acts on $\psi \in I^{2}(V) \cong I^{2}(\mathbb{N})$ by

$$
\left(H_{0} \psi\right)(x)=\sum_{y \sim x}(\psi(y)-\psi(x))
$$

## Application: Laplacian on Quasi-crystals

$G$ a graph, $V$ set of vertices. $x \sim y$ if sites $x, y$ connected by edge. Laplacian $H_{0}$ acts on $\psi \in I^{2}(V) \cong I^{2}(\mathbb{N})$ by

$$
\left(H_{0} \psi\right)(x)=\sum_{y \sim x}(\psi(y)-\psi(x))
$$

- Spectrum corresponds to the single-electron energy (electronic transportation).


## Application: Laplacian on Quasi-crystals

$G$ a graph, $V$ set of vertices. $x \sim y$ if sites $x, y$ connected by edge. Laplacian $H_{0}$ acts on $\psi \in I^{2}(V) \cong I^{2}(\mathbb{N})$ by

$$
\left(H_{0} \psi\right)(x)=\sum_{y \sim x}(\psi(y)-\psi(x))
$$

- Spectrum corresponds to the single-electron energy (electronic transportation).
- Calculating the spectrum currently an open problem in the quasicrystal community - 2D cases very hard!


## Application: Laplacian on Quasi-crystals

$G$ a graph, $V$ set of vertices. $x \sim y$ if sites $x, y$ connected by edge. Laplacian $H_{0}$ acts on $\psi \in I^{2}(V) \cong I^{2}(\mathbb{N})$ by

$$
\left(H_{0} \psi\right)(x)=\sum_{y \sim x}(\psi(y)-\psi(x))
$$

- Spectrum corresponds to the single-electron energy (electronic transportation).
- Calculating the spectrum currently an open problem in the quasicrystal community - 2D cases very hard!
- Vast physics literature on Hamiltonians on aperiodic structures.


## Applications of Quasicrystals

- Reinforce steel via coating - e.g. machinery, surgical instruments...
- Heat insulation
- LEDs
- Solar absorbers
- Unique electrical properties, optical properties, hardness and nonstick properties...


## Constructing Penrose Tile



## Constructing Penrose Tile



## Constructing Penrose Tile



## Naïve Approximations

(1) Finite section with open boundary conditions: compute eigenvalues of truncated matrix $P_{n} H_{0} P_{n}$ for large $n$. Similar "Galerkin" methods suffer from spectral pollution.

## Naïve Approximations

(1) Finite section with open boundary conditions: compute eigenvalues of truncated matrix $P_{n} H_{0} P_{n}$ for large $n$. Similar "Galerkin" methods suffer from spectral pollution.
(2) Can construct Penrose tile via "Pentagrid" $\rightsquigarrow$ "Periodic Approximants"

## Naïve Approximations

(1) Finite section with open boundary conditions: compute eigenvalues of truncated matrix $P_{n} H_{0} P_{n}$ for large $n$. Similar "Galerkin" methods suffer from spectral pollution.
(2) Can construct Penrose tile via "Pentagrid" $\rightsquigarrow$ "Periodic Approximants"


## Naïve Approximations

(1) Finite section with open boundary conditions: compute eigenvalues of truncated matrix $P_{n} H_{0} P_{n}$ for large $n$. Similar "Galerkin" methods suffer from spectral pollution.
(2) Can construct Penrose tile via "Pentagrid" $\rightsquigarrow$ "Periodic Approximants"


These represent state of art in literature. Can we beat this?

## Numerical Results



## Advantages of Method

(1) Gain error control - no other general method can do this!

## Advantages of Method

(1) Gain error control - no other general method can do this!
(2) Completely local - we can calculate spectrum in any neighbourhood.

## Advantages of Method

(1) Gain error control - no other general method can do this!
(2) Completely local - we can calculate spectrum in any neighbourhood.
(3) Parallelisable.

## Advantages of Method

(1) Gain error control - no other general method can do this!
(2) Completely local - we can calculate spectrum in any neighbourhood.
(3) Parallelisable.
(4) Numerically stable.

## Advantages of Method

(1) Gain error control - no other general method can do this!
(2) Completely local - we can calculate spectrum in any neighbourhood.
(3) Parallelisable.
(4) Numerically stable.

First algorithm that realises the sharp $\Sigma_{1}$ classification - logically impossible to do better.

## Error and Speed Results



Thanks for Listening!

