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-
Background

o Hilbert space /2(N) with ||x||, = /33 [x[%, (x,y) = 327, x¥;
@ Bounded linear operator A : /?(N) — /?(N) realised as matrix
a1 a12 a3

a1 a2 a
a31 432 ass

Denote these by B(/?(N)).
e Want to compute spectrum (generalistion of eigenvalues)
Sp(A) :={z € C: A— zl not invertible}.

from the matrix elements.
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Motivation

@ Quantum mechanics, quasicrystals
. ""1

Figure: Left: Dan Shechtman, Nobel Prize in Chemistry 2011. Right:
Electron diffraction pattern of quasicrystal.

@ Intensely investigated since the 1950s, still very active today.
M2014

Figure: Left: Artur Avila, Fields Medal 2014. Right: Hofstadter butterfly.
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Our computational problem

@ Convergence in M, set of all compact subsets of C provided with the
Hausdorff metric d = dy

du(X,Y) = max< sup inf d(x,y), sup inf d(x,y)
xeX YEY yEYXE
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Our computational problem

@ Convergence in M, set of all compact subsets of C provided with the
Hausdorff metric d = dy

du(X,Y) = max{sup inf d(x,y), sup inf d(x, y)}

xeX YEY yEYXE

@ Allowed to use entries of the matrix representation of A. Want to
compute spectra of a class Q C B(/?(N)).

What attributes should an “algorithm” I',(A) possess?
© Should converge!
@ Given index n, should only use finite amounts of information.
© Should read and use this information in a consistent way.
@ Error control?
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Hierarchy of complexity

Definition 1 (Tower of Algorithms)

A tower of algorithms of height k is a family of sequences of functions
Crgrm 22— M,

where ny,...,nm € Nand [, ., are “algorithms”. Moreover,

Sp(A): lim ... lim rnk,...,nl(A)'

ng—oo  Np—o0
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Definition 1 (Tower of Algorithms)

A tower of algorithms of height k is a family of sequences of functions
Crgrm 22— M,

where ny,...,nm € Nand [, ., are “algorithms”. Moreover,

Sp(A): lim ... lim rnk,...,nl(A)'

ng—oo  Np—o0

Definition 2 (Solvability Complexity Index (SCI))

Solvability Complexity Index, SCI(Sp, Q) is the smallest integer k for
which there exists a tower of algorithms of height k. If no such tower
exists then SCI(Sp, Q) = occ.
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Problem: SCI(Sp, B(/?(N))) =3
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Problem: SCI(Sp, B(/?(N))) =3

Solution: restrict to smaller subclass. Large subclass Q C B(/?(N)) with
SCI(Sp, 2) = 1. What's more can gain error control, an algorithm such

that
z €p(A) = dist(z,Sp(A)) < 27"

Call this class X1 - “output is reliable”.
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Problem: SCI(Sp, B(/?(N))) =3

Solution: restrict to smaller subclass. Large subclass Q C B(/?(N)) with
SCI(Sp, 2) = 1. What's more can gain error control, an algorithm such
that

z €p(A) = dist(z,Sp(A)) < 27"

Call this class X1 - “output is reliable”. A stricter condition is that
z € Sp(A) = dist(z,I,(A)) < 27"

as well - “output is reliable and captures nearly everything”. Call this class
Aq
Some notation:

o If z ¢ Sp(A) write

R(z,A) := (A—zl)~! € B(I*(N)).

o Operator norm: ||A[| := sup,.| =1 [|Ax]|.
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N
Main Result

Theorem 3
SCI(Sp,Q) =1

The problem is ¥1 not A;. What's more we can build X1 algorithms.
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Main Result

Theorem 3
SCI(Sp,Q) =1

The problem is ¥1 not A;. What's more we can build X1 algorithms.

Corollary 4

Let G be a countable, locally finite, connected graph and €1¢ be class of
finite range interaction Hamiltonians on vertices of G.

SCI(Sp, Q¢) = 1

The problem is X1 not A;. What's more we can build X1 algorithms.
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Application: Laplacian on Quasi-crystals

G a graph, V set of vertices. x ~ y if sites x, y connected by edge.
Laplacian Hp acts on ¢ € 1?(V) =2 [?(N) by

(Ho)(x) = > (1(y) — ¥(x)).

y~x
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Application: Laplacian on Quasi-crystals

G a graph, V set of vertices. x ~ y if sites x, y connected by edge.
Laplacian Hp acts on ¢ € 1?(V) =2 [?(N) by

(Ho)(x) = > (1(y) — ¥(x)).

y~x

@ Spectrum corresponds to the single-electron energy (electronic
transportation).

@ Calculating the spectrum currently an open problem in the
quasicrystal community - 2D cases very hard!

@ Vast physics literature on Hamiltonians on aperiodic structures.
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Applications of Quasicrystals

Reinforce steel via coating - e.g. machinery, surgical instruments...
Heat insulation
LEDs

Solar absorbers

Unique electrical properties, optical properties, hardness and nonstick
properties...
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Constructing Penrose Tile
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Constructing Penrose Tile
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Naive Approximations

@ Finite section with open boundary conditions: compute eigenvalues of
truncated matrix P,HyP, for large n. Similar “Galerkin” methods -
suffer from spectral pollution.
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Naive Approximations
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These represent state of art in literature. Can we beat this?
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Numerical Results
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-
Advantages of Method

@ Gain error control - no other general method can do this!
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-
Advantages of Method

@ Gain error control - no other general method can do this!

@ Completely local - we can calculate spectrum in any neighbourhood.
© Parallelisable.

© Numerically stable.

First algorithm that realises the sharp X1 classification - logically
impossible to do better.
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Error and Speed Results
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Thanks for Listening!
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